Vector algebra
In mathematics, vector algebra may mean:
- The operations of vector addition and scalar multiplication of a vector space
- The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space
- Algebra over a field – a vector space equipped with a bilinear product
- Any of the original vector algebras of the nineteenth century, including
1. Introduction to Vectors
[edit]- A vector is a quantity that has both magnitude and direction.
- Represented as A = (a₁, a₂, a₃) in 3D space.
- Notation: Bold letters (A), A with an arrow (), or component form.
2. Types of Vectors
• Zero Vector (\mathbf{0}): Magnitude is zero.
• Unit Vector (\hat{A}): Magnitude is one.
• Equal Vectors: Same magnitude and direction.
• Negative Vector: Same magnitude but opposite direction.
• Collinear Vectors: Parallel or anti-parallel vectors.
• Coplanar Vectors: Lie in the same plane.
3. Operations on Vectors
(i) Addition of Vectors
• Triangle Law: \mathbf{A} + \mathbf{B} = \mathbf{C}, placing the tail of \mathbf{B} at the head of \mathbf{A}.
• Parallelogram Law: The diagonal of the parallelogram represents the sum.
(ii) Subtraction of Vectors
• \mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B}
(iii) Scalar Multiplication
• k\mathbf{A} scales the magnitude by k while maintaining direction.)
4. Components of a Vector
• In 3D Cartesian system:
\mathbf{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}
where \hat{i}, \hat{j}, \hat{k} are unit vectors along x, y, z axes.
• Magnitude:
|\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}
5. Scalar (Dot) Product
• \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}||\mathbf{B}|\cos\theta
• Properties:
• Commutative: \mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}
• Distributive: \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}
• \mathbf{A} \cdot \mathbf{A} = |\mathbf{A}|^2
6. Vector (Cross) Product
• \mathbf{A} \times \mathbf{B} = |\mathbf{A}||\mathbf{B}|\sin\theta \ \hat{n}
(Perpendicular to both \mathbf{A} and \mathbf{B})
• Properties:
• Anti-commutative: \mathbf{A} \times \mathbf{B} = - (\mathbf{B} \times \mathbf{A})
• Distributive: \mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}
7. Triple Products
• Scalar Triple Product: \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})
Represents the volume of a parallelepiped.
• Vector Triple Product: \mathbf{A} \times (\mathbf{B} \times \mathbf{C})
Follows the BAC-CAB rule:
\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}
8. Applications of Vector Algebra
• Physics: Work (\mathbf{F} \cdot \mathbf{d}), Torque (\mathbf{r} \times \mathbf{F}), Motion.
• Engineering: Forces, Equilibrium, 3D modeling
• Computer Graphics: 3D transformations, animations.